U.S. flag

An official website of the United States government

Format

Send to:

Choose Destination

Increased variability in muscle fiber diameter

MedGen UID:
336019
Concept ID:
C1843700
Finding
Synonyms: Increased fiber size variation; Increased variation in fiber size; Increased variation in muscle fiber size; Muscle fiber size variation; Variation in muscle fiber size
 
HPO: HP:0003557

Definition

An abnormally high degree of muscle fiber size variation. This phenotypic feature can be observed upon muscle biopsy. [from HPO]

Term Hierarchy

CClinical test,  RResearch test,  OOMIM,  GGeneReviews,  VClinVar  
  • CROGVIncreased variability in muscle fiber diameter

Conditions with this feature

Glycogen storage disease, type VII
MedGen UID:
5342
Concept ID:
C0017926
Disease or Syndrome
Glycogen storage disease VII is an autosomal recessive metabolic disorder characterized clinically by exercise intolerance, muscle cramping, exertional myopathy, and compensated hemolysis. Myoglobinuria may also occur. The deficiency of the muscle isoform of PFK results in a total and partial loss of muscle and red cell PFK activity, respectively. Raben and Sherman (1995) noted that not all patients with GSD VII seek medical care because in some cases it is a relatively mild disorder.
Multiple symmetric lipomatosis
MedGen UID:
7349
Concept ID:
C0023804
Disease or Syndrome
Multiple symmetric lipomatosis (MSL) is an autosomal recessive metabolic disorder characterized by the growth of unencapsulated masses of adipose tissue with predilection for the cervical and thoracic regions. The lipoma growth is striking and disfiguring, and growth around the neck may cause difficulty swallowing or breathing. The age at onset ranges from childhood to young adulthood. Most, but not all, patients develop axonal peripheral neuropathy, which can appear at any age and varies in severity. Laboratory studies in MSL show low leptin (164160), low adiponectin (605441), variably increased lactate, and increased FGF21 (609436). Some patients may have insulin resistance. The disorder is exclusively associated with a particular MFN2 mutation (R707W; 608507.0013), usually in the homozygous state, but sometimes in the compound heterozygous state (Rocha et al., 2017; Capel et al., 2018).
Sarcotubular myopathy
MedGen UID:
78750
Concept ID:
C0270968
Congenital Abnormality
A mild subtype of autosomal recessive limb girdle muscular dystrophy characterized by slowly progressive proximal muscle weakness and wasting of the pelvic and shoulder girdles with onset that usually occurs during the second or third decade of life. Clinical presentation is variable and can include calf psuedohypertrophy, joint contractures, scapular winging, muscle cramping and/or facial and respiratory muscle involvement.
HNSHA due to aldolase A deficiency
MedGen UID:
82895
Concept ID:
C0272066
Disease or Syndrome
Aldolase A deficiency is an autosomal recessive disorder associated with hereditary hemolytic anemia (Kishi et al., 1987).
Autosomal recessive limb-girdle muscular dystrophy type 2C
MedGen UID:
98045
Concept ID:
C0410173
Disease or Syndrome
A subtype of autosomal recessive limb-girdle muscular dystrophy characterized by a childhood onset of progressive shoulder and pelvic girdle muscle weakness and atrophy frequently associated with calf hypertrophy, diaphragmatic weakness, and/or variable cardiac abnormalities. Mild to moderate elevated serum creatine kinase levels and positive Gowers sign are reported.
Ullrich congenital muscular dystrophy 1A
MedGen UID:
98046
Concept ID:
C0410179
Disease or Syndrome
Collagen VI-related dystrophies (COL6-RDs) represent a continuum of overlapping clinical phenotypes with Bethlem muscular dystrophy at the milder end, Ullrich congenital muscular dystrophy (UCMD) at the more severe end, and a phenotype in between UCMD and Bethlem muscular dystrophy, referred to as intermediate COL6-RD. Bethlem muscular dystrophy is characterized by a combination of proximal muscle weakness and joint contractures. Hypotonia and delayed motor milestones occur in early childhood; mild hypotonia and weakness may be present congenitally. By adulthood, there is evidence of proximal weakness and contractures of the elbows, Achilles tendons, and long finger flexors. The progression of weakness is slow, and more than two thirds of affected individuals older than age 50 years remain independently ambulatory indoors, while relying on supportive means for mobility outdoors. Respiratory involvement is not a consistent feature. UCMD is characterized by congenital weakness, hypotonia, proximal joint contractures, and striking hyperlaxity of distal joints. Decreased fetal movements are frequently reported. Some affected children acquire the ability to walk independently; however, progression of the disease results in a loss of ambulation by age ten to eleven years. Early and severe respiratory insufficiency occurs in all individuals, resulting in the need for nocturnal noninvasive ventilation (NIV) in the form of bilevel positive airway pressure (BiPAP) by age 11 years. Intermediate COL6-RD is characterized by independent ambulation past age 11 years and respiratory insufficiency that is later in onset than in UCMD and results in the need for NIV in the form of BiPAP by the late teens to early 20s. In contrast to individuals with Bethlem muscular dystrophy, those with intermediate COL6-RD typically do not achieve the ability to run, jump, or climb stairs without use of a railing.
Eichsfeld type congenital muscular dystrophy
MedGen UID:
98047
Concept ID:
C0410180
Disease or Syndrome
Rigid spine muscular dystrophy (RSMD) is a form of congenital muscular dystrophy. Disorders in this group cause muscle weakness and wasting (atrophy) beginning very early in life. In particular, RSMD involves weakness of the muscles of the torso and neck (axial muscles). Other characteristic features include spine stiffness and serious breathing problems.\n\nIn RSMD, muscle weakness is often apparent at birth or within the first few months of life. Affected infants can have poor head control and weak muscle tone (hypotonia), which may delay the development of motor skills such as crawling or walking. Over time, muscles surrounding the spine atrophy, and the joints of the spine develop deformities called contractures that restrict movement. The neck and back become stiff and rigid, and affected children have limited ability to move their heads up and down or side to side. Affected children eventually develop an abnormal curvature of the spine (scoliosis). In some people with RSMD, muscles in the inner thighs also atrophy, although it does not impair the ability to walk.\n\nA characteristic feature of RSMD is breathing difficulty (respiratory insufficiency) due to restricted movement of the torso and weakness of the diaphragm, which is the muscle that separates the abdomen from the chest cavity. The breathing problems, which tend to occur only at night, can be life-threatening. Many affected individuals require a machine to help them breathe (mechanical ventilation) during sleep.\n\nThe combination of features characteristic of RSMD, particularly axial muscle weakness, spine rigidity, and respiratory insufficiency, is sometimes referred to as rigid spine syndrome. While these features occur on their own in RSMD, they can also occur along with additional signs and symptoms in other muscle disorders. The features of rigid spine syndrome typically appear at a younger age in people with RSMD than in those with other muscle disorders.
Central core myopathy
MedGen UID:
199773
Concept ID:
C0751951
Disease or Syndrome
Congenital myopathy-1A (CMYO1A) with susceptibility to malignant hyperthermia is an autosomal dominant disorder of skeletal muscle characterized by muscle weakness primarily affecting the proximal muscles of the lower limbs beginning in infancy or early childhood, although later onset of symptoms has been reported. There is significant phenotypic variability, even within families, and the wide clinical diversity most likely depends on the severity of the RYR1 mutation. The disorder is static or slowly progressive; affected individuals typically show delayed motor development and usually achieve independent walking, although many have difficulty running or climbing stairs. Additional features often include mild facial weakness, joint laxity, shoulder girdle weakness, and skeletal manifestations, such as dislocation of the hips, foot deformities, scoliosis, and Achilles tendon contractures. Some patients present with orthopedic deformities. Serum creatine kinase is usually not elevated. Respiratory involvement is rare and there is no central nervous system or cardiac involvement. Patients with dominant mutations in the RYR1 gene are at risk for malignant hyperthermia and both disorders may segregate in the same family. Historically, patients with congenital myopathy due to RYR1 mutations were diagnosed based on the finding of pathologic central cores (central core disease; CCD) on muscle biopsy, which represent areas that lack oxidative enzymes and mitochondrial activity in type 1 muscle fibers. However, additional pathologic findings may also be observed, including cores and rods, central nuclei, fiber type disproportion, multiminicores, and uniform type 1 fibers. These histopathologic features are not always specific to RYR1 myopathy and often change over time (Quinlivan et al., 2003; Jungbluth et al., 2007; Klein et al., 2012; Ogasawara and Nishino, 2021). Some patients with RYR1 mutations have pathologic findings on muscle biopsy, but are clinically asymptomatic (Shuaib et al., 1987; Quane et al., 1993). Rare patients with a more severe phenotype have been found to carry a heterozygous mutation in the RYR1 gene inherited from an unaffected parent. However, in these cases, there is a possibility of recessive inheritance (CMYO1B; 255320) with either a missed second RYR1 mutation in trans or a genomic rearrangement on the other allele that is undetectable on routine genomic sequencing, since the RYR1 gene is very large and genetic analysis may be difficult (Klein et al., 2012). Genetic Heterogeneity of Congenital Myopathy See also CMYO1B (255320), caused by mutation in the RYR1 gene (180901) on chromosome 19q13; CMYO2A (161800), CMYO2B (620265), and CMYO2C (620278), caused by mutation in the ACTA1 gene (102610) on chromosome 1q42; CMYO3 (602771), caused by mutation in the SELENON gene (606210) on chromosome 1p36; CMYO4A (255310) and CMYO4B (609284), caused by mutation in the TPM3 gene (191030) on chromosome 1q21; CMYO5 (611705), caused by mutation in the TTN gene (188840) on chromosome 2q31; CMYO6 (605637), caused by mutation in the MYH2 gene (160740) on chromosome 17p13; CMYO7A (608358) and CMYO7B (255160), caused by mutation in the MYH7 gene (160760) on chromosome 14q11; CMYO8 (618654), caused by mutation in the ACTN2 gene (102573) on chromosome 1q43; CMYO9A (618822) and CMYO9B (618823), caused by mutation in the FXR1 gene (600819) on chromosome 3q28; CMYO10A (614399) and CMYO10B (620249), caused by mutation in the MEGF10 gene (612453) on chromosome 5q23; CMYO11 (619967), caused by mutation in the HACD1 gene (610467) on chromosome 10p12; CMYO12 (612540), caused by mutation in the CNTN1 gene (600016) on chromosome 12q12; CMYO13 (255995), caused by mutation in the STAC3 gene (615521) on chromosome 12q13; CMYO14 (618414), caused by mutation in the MYL1 gene (160780) on chromosome 2q34; CMYO15 (620161), caused by mutation in the TNNC2 gene (191039) on chromosome 20q13; CMYO16 (618524), caused by mutation in the MYBPC1 gene (160794) on chromosome 12q23; CMYO17 (618975), caused by mutation in the MYOD1 gene (159970) on chromosome 11p15; CMYO18 (620246), caused by mutation in the CACNA1S gene (114208) on chromosome 1q32; CMYO19 (618578), caused by mutation in the PAX7 gene (167410) on chromosome 1p36; CMYO20 (620310), caused by mutation in the RYR3 gene (180903) on chromosome 15q13; CMYO21 (620326), caused by mutation in the DNAJB4 gene (611327) on chromosome 1p31; CMYO22A (620351) and CMYO22B (620369), both caused by mutation in the SCN4A gene (603967) on chromosome 17q23; CMYO23 (609285), caused by mutation in the TPM2 gene (190990) on chromosome 9p13; and CMYO24 (617336), caused by mutation in the MYPN gene (608517) on chromosome 10q21.
Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal dominant 1
MedGen UID:
371919
Concept ID:
C1834846
Disease or Syndrome
POLG-related disorders comprise a continuum of overlapping phenotypes that were clinically defined long before their molecular basis was known. Most affected individuals have some, but not all, of the features of a given phenotype; nonetheless, the following nomenclature can assist the clinician in diagnosis and management. Onset of the POLG-related disorders ranges from infancy to late adulthood. Alpers-Huttenlocher syndrome (AHS), one of the most severe phenotypes, is characterized by childhood-onset progressive and ultimately severe encephalopathy with intractable epilepsy and hepatic failure. Childhood myocerebrohepatopathy spectrum (MCHS) presents between the first few months of life and about age three years with developmental delay or dementia, lactic acidosis, and a myopathy with failure to thrive. Other findings can include liver failure, renal tubular acidosis, pancreatitis, cyclic vomiting, and hearing loss. Myoclonic epilepsy myopathy sensory ataxia (MEMSA) now describes the spectrum of disorders with epilepsy, myopathy, and ataxia without ophthalmoplegia. MEMSA now includes the disorders previously described as spinocerebellar ataxia with epilepsy (SCAE). The ataxia neuropathy spectrum (ANS) includes the phenotypes previously referred to as mitochondrial recessive ataxia syndrome (MIRAS) and sensory ataxia neuropathy dysarthria and ophthalmoplegia (SANDO). About 90% of persons in the ANS have ataxia and neuropathy as core features. Approximately two thirds develop seizures and almost one half develop ophthalmoplegia; clinical myopathy is rare. Autosomal recessive progressive external ophthalmoplegia (arPEO) is characterized by progressive weakness of the extraocular eye muscles resulting in ptosis and ophthalmoparesis (or paresis of the extraocular muscles) without associated systemic involvement; however, caution is advised because many individuals with apparently isolated arPEO at the onset develop other manifestations of POLG-related disorders over years or decades. Of note, in the ANS spectrum the neuropathy commonly precedes the onset of PEO by years to decades. Autosomal dominant progressive external ophthalmoplegia (adPEO) typically includes a generalized myopathy and often variable degrees of sensorineural hearing loss, axonal neuropathy, ataxia, depression, parkinsonism, hypogonadism, and cataracts (in what has been called "chronic progressive external ophthalmoplegia plus," or "CPEO+").
Autosomal recessive limb-girdle muscular dystrophy type 2J
MedGen UID:
324741
Concept ID:
C1837342
Disease or Syndrome
A form of limb-girdle muscular dystrophy that usually has a childhood onset (but can range from the first to third decade of life) of severe progressive proximal weakness, eventually involving the distal muscles. Some patients may remain ambulatory but most are wheelchair dependant 20 years after onset. Caused by homozygous mutation in the titin gene (TTN).
Spinal muscular atrophy, type IV
MedGen UID:
325364
Concept ID:
C1838230
Disease or Syndrome
Spinal muscular atrophy (SMA) is characterized by muscle weakness and atrophy resulting from progressive degeneration and irreversible loss of the anterior horn cells in the spinal cord (i.e., lower motor neurons) and the brain stem nuclei. The onset of weakness ranges from before birth to adulthood. The weakness is symmetric, proximal > distal, and progressive. Before the genetic basis of SMA was understood, it was classified into clinical subtypes based on maximum motor function achieved; however, it is now apparent that the phenotype of SMN1-associated SMA spans a continuum without clear delineation of subtypes. With supportive care only, poor weight gain with growth failure, restrictive lung disease, scoliosis, and joint contractures are common complications; however, newly available targeted treatment options are changing the natural history of this disease.
Sensory ataxic neuropathy, dysarthria, and ophthalmoparesis
MedGen UID:
375302
Concept ID:
C1843851
Disease or Syndrome
POLG-related disorders comprise a continuum of overlapping phenotypes that were clinically defined long before their molecular basis was known. Most affected individuals have some, but not all, of the features of a given phenotype; nonetheless, the following nomenclature can assist the clinician in diagnosis and management. Onset of the POLG-related disorders ranges from infancy to late adulthood. Alpers-Huttenlocher syndrome (AHS), one of the most severe phenotypes, is characterized by childhood-onset progressive and ultimately severe encephalopathy with intractable epilepsy and hepatic failure. Childhood myocerebrohepatopathy spectrum (MCHS) presents between the first few months of life and about age three years with developmental delay or dementia, lactic acidosis, and a myopathy with failure to thrive. Other findings can include liver failure, renal tubular acidosis, pancreatitis, cyclic vomiting, and hearing loss. Myoclonic epilepsy myopathy sensory ataxia (MEMSA) now describes the spectrum of disorders with epilepsy, myopathy, and ataxia without ophthalmoplegia. MEMSA now includes the disorders previously described as spinocerebellar ataxia with epilepsy (SCAE). The ataxia neuropathy spectrum (ANS) includes the phenotypes previously referred to as mitochondrial recessive ataxia syndrome (MIRAS) and sensory ataxia neuropathy dysarthria and ophthalmoplegia (SANDO). About 90% of persons in the ANS have ataxia and neuropathy as core features. Approximately two thirds develop seizures and almost one half develop ophthalmoplegia; clinical myopathy is rare. Autosomal recessive progressive external ophthalmoplegia (arPEO) is characterized by progressive weakness of the extraocular eye muscles resulting in ptosis and ophthalmoparesis (or paresis of the extraocular muscles) without associated systemic involvement; however, caution is advised because many individuals with apparently isolated arPEO at the onset develop other manifestations of POLG-related disorders over years or decades. Of note, in the ANS spectrum the neuropathy commonly precedes the onset of PEO by years to decades. Autosomal dominant progressive external ophthalmoplegia (adPEO) typically includes a generalized myopathy and often variable degrees of sensorineural hearing loss, axonal neuropathy, ataxia, depression, parkinsonism, hypogonadism, and cataracts (in what has been called "chronic progressive external ophthalmoplegia plus," or "CPEO+").
Nemaline myopathy 2
MedGen UID:
342534
Concept ID:
C1850569
Disease or Syndrome
Nemaline myopathy-2 (NEM2) is an autosomal recessive skeletal muscle disorder with a wide range of severity. The most common clinical presentation is early-onset (in infancy or childhood) muscle weakness predominantly affecting proximal limb muscles. Muscle biopsy shows accumulation of Z-disc and thin filament proteins into aggregates named 'nemaline bodies' or 'nemaline rods,' usually accompanied by disorganization of the muscle Z discs. The clinical and histologic spectrum of entities caused by variants in the NEB gene is a continuum, ranging in severity. The distribution of weakness can vary from generalized muscle weakness, more pronounced in proximal limb muscles, to distal-only involvement, although neck flexor weakness appears to be rather consistent. Histologic patterns range from a severe usually nondystrophic disturbance of the myofibrillar pattern to an almost normal pattern, with or without nemaline bodies, sometimes combined with cores (summary by Lehtokari et al., 2014). Genetic Heterogeneity of Nemaline Myopathy See also NEM1 (255310), caused by mutation in the tropomyosin-3 gene (TPM3; 191030) on chromosome 1q22; NEM3 (161800), caused by mutation in the alpha-actin-1 gene (ACTA1; 102610) on chromosome 1q42; NEM4 (609285), caused by mutation in the beta-tropomyosin gene (TPM2; 190990) on chromosome 9p13; NEM5A (605355), also known as Amish nemaline myopathy, NEM5B (620386), and NEM5C (620389), all caused by mutation in the troponin T1 gene (TNNT1; 191041) on chromosome 19q13; NEM6 (609273), caused by mutation in the KBTBD13 gene (613727) on chromosome 15q22; NEM7 (610687), caused by mutation in the cofilin-2 gene (CFL2; 601443) on chromosome 14q13; NEM8 (615348), caused by mutation in the KLHL40 gene (615340), on chromosome 3p22; NEM9 (615731), caused by mutation in the KLHL41 gene (607701) on chromosome 2q31; NEM10 (616165), caused by mutation in the LMOD3 gene (616112) on chromosome 3p14; and NEM11 (617336), caused by mutation in the MYPN gene (608517) on chromosome 10q21. Several of the genes encode components of skeletal muscle sarcomeric thin filaments (Sanoudou and Beggs, 2001). Mutations in the NEB gene are the most common cause of nemaline myopathy (Lehtokari et al., 2006).
Congenital multicore myopathy with external ophthalmoplegia
MedGen UID:
340597
Concept ID:
C1850674
Disease or Syndrome
Congenital myopathy-1B (CMYO1B) is an autosomal recessive disorder of skeletal muscle characterized by severe hypotonia and generalized muscle weakness apparent soon after birth or in early childhood with delayed motor development, generalized muscle weakness and atrophy, and difficulty walking or running. Affected individuals show proximal muscle weakness with axial and shoulder girdle involvement, external ophthalmoplegia, and bulbar weakness, often resulting in feeding difficulties and respiratory insufficiency. Orthopedic complications such as joint laxity, distal contractures, hip dislocation, cleft palate, and scoliosis are commonly observed. Serum creatine kinase is normal. The phenotype is variable in severity (Jungbluth et al., 2005; Bharucha-Goebel et al., 2013). Some patients show symptoms in utero, including reduced fetal movements, polyhydramnios, and intrauterine growth restriction. The most severely affected patients present in utero with fetal akinesia, arthrogryposis, and lung hypoplasia resulting in fetal or perinatal death (McKie et al., 2014). Skeletal muscle biopsy of patients with recessive RYR1 mutations can show variable features, including multiminicores (Ferreiro and Fardeau, 2002), central cores (Jungbluth et al., 2002), congenital fiber-type disproportion (CFTD) (Monnier et al., 2009), and centronuclear myopathy (Wilmshurst et al., 2010). For a discussion of genetic heterogeneity of congenital myopathy, see CMYO1A (117000).
Hereditary myopathy with lactic acidosis due to ISCU deficiency
MedGen UID:
342573
Concept ID:
C1850718
Disease or Syndrome
Hereditary myopathy with lactic acidosis (HML) is an autosomal recessive muscular disorder characterized by childhood onset of exercise intolerance with muscle tenderness, cramping, dyspnea, and palpitations. Biochemical features include lactic acidosis and, rarely, rhabdomyolysis. It is a chronic disorder with remission and exacerbation of the muscle phenotype (summary by Sanaker et al., 2010).
Autosomal recessive limb-girdle muscular dystrophy type 2B
MedGen UID:
338149
Concept ID:
C1850889
Disease or Syndrome
Dysferlinopathy includes a spectrum of muscle disease characterized by two major phenotypes: Miyoshi muscular dystrophy (MMD) and limb-girdle muscular dystrophy type 2B (LGMD2B); and two minor phenotypes: asymptomatic hyperCKemia and distal myopathy with anterior tibial onset (DMAT). MMD (median age of onset 19 years) is characterized by muscle weakness and atrophy, most marked in the distal parts of the legs, especially the gastrocnemius and soleus muscles. Over a period of years, the weakness and atrophy spread to the thighs and gluteal muscles. The forearms may become mildly atrophic with decrease in grip strength; the small muscles of the hands are spared. LGMD2B is characterized by early weakness and atrophy of the pelvic and shoulder girdle muscles in adolescence or young adulthood, with slow progression. Other phenotypes in this spectrum are scapuloperoneal syndrome and congenital muscular dystrophy. Asymptomatic hyperCKemia is characterized by marked elevation of serum CK concentration only. DMAT is characterized by early and predominant distal muscle weakness, particularly of the muscles of the anterior compartment of the legs.
Nemaline myopathy 7
MedGen UID:
343979
Concept ID:
C1853154
Disease or Syndrome
Nemaline myopathy-7 is an autosomal recessive congenital myopathy characterized by very early onset of hypotonia and delayed motor development. Affected individuals have difficulty walking and running due to proximal muscle weakness. The disorder is slowly progressive, and patients may lose independent ambulation. Muscle biopsy shows nemaline rods and may later show minicores, abnormal protein aggregates, and dystrophic changes (summary by Ockeloen et al., 2012). For a discussion of genetic heterogeneity of nemaline myopathy, see 161800.
Myopathy, proximal, and ophthalmoplegia
MedGen UID:
381340
Concept ID:
C1854106
Disease or Syndrome
Congenital myopathy-6 with ophthalmoplegia (CMYO6) is a relatively mild muscle disorder characterized by childhood onset of symptoms. The disorder is either slowly progressive or nonprogressive, and affected individuals retain ambulation, although there is variable severity. CMYO6 can show both autosomal dominant and autosomal recessive inheritance; the phenotype is similar in both forms (summary by Lossos et al., 2005 and Tajsharghi et al., 2014). For a discussion of genetic heterogeneity of congenital myopathy, see CMYO1A (117000).
Myopathy, myofibrillar, 9, with early respiratory failure
MedGen UID:
350930
Concept ID:
C1863599
Disease or Syndrome
Hereditary myopathy with early respiratory failure (HMERF) is a slowly progressive myopathy that typically begins in the third to fifth decades of life. The usual presenting findings are gait disturbance relating to distal leg weakness or nocturnal respiratory symptoms due to respiratory muscle weakness. Weakness eventually generalizes and affects both proximal and distal muscles. Most affected individuals require walking aids within a few years of onset; some progress to wheelchair dependence and require nocturnal noninvasive ventilatory support about ten years after onset. The phenotype varies even among individuals within the same family: some remain ambulant until their 70s whereas others may require ventilator support in their 40s.
Autosomal recessive limb-girdle muscular dystrophy type 2G
MedGen UID:
400895
Concept ID:
C1866008
Disease or Syndrome
Autosomal recessive limb-girdle muscular dystrophy-7 (LGMDR7), also known as LGMDR7, is a skeletal muscle disorder with age of onset in the first or second decade of life. Weakness of proximal and some distal muscles progresses to inability to walk by the third or fourth decade, although some individuals retain the ability to walk without support later. Heart involvement may be present. Creatine kinase levels are increased as much as 30-fold (summary by Moreira et al., 2000). For a general description and a discussion of genetic heterogeneity of autosomal recessive limb-girdle muscular dystrophy, see LGMDR1 (253600).
Dilated cardiomyopathy 1X
MedGen UID:
370583
Concept ID:
C1969024
Disease or Syndrome
Any familial isolated dilated cardiomyopathy in which the cause of the disease is a mutation in the FKTN gene.
Early-onset myopathy with fatal cardiomyopathy
MedGen UID:
435983
Concept ID:
C2673677
Disease or Syndrome
Salih myopathy is characterized by muscle weakness (manifest during the neonatal period or in early infancy) and delayed motor development; children acquire independent walking between ages 20 months and four years. In the first decade of life, global motor performance is stable or tends to improve. Moderate joint and neck contractures and spinal rigidity may manifest in the first decade but become more obvious in the second decade. Scoliosis develops after age 11 years. Cardiac dysfunction manifests between ages five and 16 years, progresses rapidly, and leads to death between ages eight and 20 years, usually from heart rhythm disturbances.
X-linked myopathy with postural muscle atrophy
MedGen UID:
395525
Concept ID:
C2678055
Disease or Syndrome
Emery-Dreifuss muscular dystrophy (EDMD) is characterized by the clinical triad of: joint contractures that begin in early childhood; slowly progressive muscle weakness and wasting initially in a humero-peroneal distribution that later extends to the scapular and pelvic girdle muscles; and cardiac involvement that may manifest as palpitations, presyncope and syncope, poor exercise tolerance, and congestive heart failure along with variable cardiac rhythm disturbances. Age of onset, severity, and progression of muscle and cardiac involvement demonstrate both inter- and intrafamilial variability. Clinical variability ranges from early onset with severe presentation in childhood to late onset with slow progression in adulthood. In general, joint contractures appear during the first two decades, followed by muscle weakness and wasting. Cardiac involvement usually occurs after the second decade and respiratory function may be impaired in some individuals.
Congenital generalized lipodystrophy type 4
MedGen UID:
412871
Concept ID:
C2750069
Disease or Syndrome
Congenital generalized lipodystrophy type 4 (CGL4) combines the phenotype of classic Berardinelli-Seip lipodystrophy (608594) with muscular dystrophy and cardiac conduction anomalies (Hayashi et al., 2009). For a general description and a discussion of genetic heterogeneity of congenital generalized lipodystrophy, see CGL1 (608594).
Congenital muscular dystrophy due to integrin alpha-7 deficiency
MedGen UID:
413044
Concept ID:
C2750786
Disease or Syndrome
A rare genetic congenital muscular dystrophy due to extracellular matrix protein anomaly. The disease has characteristics of early motor development delay and muscle weakness with mild elevation of serum creatine kinase that may be followed by progressive disease course with predominantly proximal muscle weakness and atrophy, motor development regress, scoliosis and respiratory insufficiency. There is evidence this disease is caused by compound heterozygous mutation in the ITGA7 gene on chromosome 12q13.
Emery-Dreifuss muscular dystrophy 5, autosomal dominant
MedGen UID:
414111
Concept ID:
C2751805
Disease or Syndrome
Any autosomal dominant Emery-Dreifuss muscular dystrophy in which the cause of the disease is a mutation in the SYNE2 gene.
Developmental and epileptic encephalopathy, 39
MedGen UID:
414492
Concept ID:
C2751855
Disease or Syndrome
Developmental and epileptic encephalopathy-39 with leukodystrophy (DEE39) is an autosomal recessive neurologic syndrome characterized clinically by global developmental delay apparent in early infancy, early-onset seizures, hypotonia with poor motor function, and hypomyelination on brain imaging. Other features include absent speech and inability to walk; spasticity and hyperreflexia has also been reported. Although there is significant hypomyelination on brain imaging, the disorder was not classified as a primary leukodystrophy. The myelination defect was thought to stem from primary neuronal dysfunction due to impaired mitochondrial transport activity (summary by Wibom et al., 2009 and Falk et al., 2014). However, serial brain imaging in a patient with DEE39 by Kavanaugh et al. (2019) suggested that the mechanism of disease is consistent with a leukoaxonopathy type of leukodystrophy. For a general phenotypic description and a discussion of genetic heterogeneity of DEE, see 308350.
DPM3-congenital disorder of glycosylation
MedGen UID:
414534
Concept ID:
C2752007
Disease or Syndrome
Limb-girdle muscular dystrophy-dystroglycanopathy type C15 (MDDGC15) is an autosomal recessive disorder characterized by progressive proximal muscle weakness, manifest initially as unsteady gait, but later including more distal muscles, and dilated cardiomyopathy. The age at onset varies widely from the first decade to adulthood; those with earlier onset may have delayed motor development. Laboratory studies show increased serum creatine kinase and muscle biopsy shows dystrophic features with decreased alpha-dystroglycan (DAG1; 128239). Biochemical studies often show evidence of abnormal N-glycosylation of serum proteins, consistent with a congenital disorder of glycosylation (CDG) (summary by Svahn et al., 2019). For a discussion of genetic heterogeneity of muscular dystrophy- dystroglycanopathy type C, see MDDGC1 (609308). For a discussion of the classification of CDGs, see CDG1A (212065).
Epidermolysis bullosa simplex 5B, with muscular dystrophy
MedGen UID:
418981
Concept ID:
C2931072
Disease or Syndrome
Epidermolysis bullosa simplex (EBS) is characterized by fragility of the skin (and mucosal epithelia in some instances) that results in non-scarring blisters and erosions caused by minor mechanical trauma. EBS is distinguished from other types of epidermolysis bullosa (EB) or non-EB skin fragility syndromes by the location of the blistering in relation to the dermal-epidermal junction. In EBS, blistering occurs within basal keratinocytes. The severity of blistering ranges from limited to hands and feet to widespread involvement. Additional features can include hyperkeratosis of the palms and soles (keratoderma), nail dystrophy, milia, and hyper- and/or hypopigmentation. Rare EBS subtypes have been associated with additional clinical features including pyloric atresia, muscular dystrophy, cardiomyopathy, and/or nephropathy.
Autosomal recessive limb-girdle muscular dystrophy type 2D
MedGen UID:
424706
Concept ID:
C2936332
Disease or Syndrome
Autosomal recessive limb-girdle muscular dystrophy-3 (LGMDR3) affects mainly the proximal muscles and results in difficulty walking. Most individuals have onset in childhood; the disorder is progressive. Other features may include scapular winging, calf pseudohypertrophy, and contractures. Cardiomyopathy has rarely been reported (summary by Babameto-Laku et al., 2011). For a discussion of genetic heterogeneity of autosomal recessive limb-girdle muscular dystrophy, see LGMDR1 (253600).
Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A2
MedGen UID:
461761
Concept ID:
C3150411
Disease or Syndrome
Congenital muscular dystrophy-dystroglycanopathy with brain and eye anomalies (type A), which includes both the more severe Walker-Warburg syndrome (WWS) and the slightly less severe muscle-eye-brain disease (MEB), is an autosomal recessive disorder with characteristic brain and eye malformations, profound mental retardation, congenital muscular dystrophy, and death usually in the first years of life. It represents the most severe end of a phenotypic spectrum of similar disorders resulting from defective glycosylation of DAG1 (128239), collectively known as 'dystroglycanopathies' (van Reeuwijk et al., 2005). For a general phenotypic description and a discussion of genetic heterogeneity of muscular dystrophy-dystroglycanopathy type A, see MDDGA1 (236670).
Autosomal recessive limb-girdle muscular dystrophy type 2O
MedGen UID:
461767
Concept ID:
C3150417
Disease or Syndrome
MDDGC3 is a rare form of autosomal recessive limb-girdle muscular dystrophy with normal cognition (Clement et al., 2008). It is part of a group of similar disorders resulting from defective glycosylation of alpha-dystroglycan (DAG1; 128239), collectively known as 'dystroglycanopathies' (Godfrey et al., 2007). For a discussion of genetic heterogeneity of muscular dystrophy-dystroglycanopathy type C, see MDDGC1 (609308).
Hypermethioninemia with deficiency of S-adenosylhomocysteine hydrolase
MedGen UID:
462408
Concept ID:
C3151058
Disease or Syndrome
Hypermethioninemia with S-adenosylhomocysteine hydrolase deficiency is an autosomal recessive severe neurometabolic disorder affecting the muscles, liver, and nervous system, resulting in death in infancy (summary by Bas et al., 2020). Other causes of hypermethioninemia include hereditary tyrosinemia (276700), cystathionine beta-synthase deficiency (236200), and methionine adenosyltransferase deficiency (250850).
Optic atrophy with or without deafness, ophthalmoplegia, myopathy, ataxia, and neuropathy
MedGen UID:
478179
Concept ID:
C3276549
Disease or Syndrome
Syndromic optic atrophy, also known as DOA+ syndrome, is a neurologic disorder characterized most commonly by an insidious onset of visual loss and sensorineural hearing loss in childhood with variable presentation of other clinical manifestations including progressive external ophthalmoplegia (PEO), muscle cramps, hyperreflexia, and ataxia. There appears to be a wide range of intermediate phenotypes (Yu-Wai-Man et al., 2010).
Distal myopathy, Tateyama type
MedGen UID:
482073
Concept ID:
C3280443
Disease or Syndrome
CAV3-related distal myopathy is one form of distal myopathy, a group of disorders characterized by weakness and loss of function affecting the muscles farthest from the center of the body (distal muscles), such as those of the hands and feet. People with CAV3-related distal myopathy experience wasting (atrophy) and weakness of the small muscles in the hands and feet that generally become noticeable in adulthood. A bump or other sudden impact on the muscles, especially those in the forearms, may cause them to exhibit repetitive tensing (percussion-induced rapid contraction). The rapid contractions can continue for up to 30 seconds and may be painful. Overgrowth (hypertrophy) of the calf muscles can also occur in CAV3-related distal myopathy. The muscles closer to the center of the body (proximal muscles) such as the thighs and upper arms are normal in this condition.
MEGF10-related myopathy
MedGen UID:
482309
Concept ID:
C3280679
Disease or Syndrome
Congenital myopathy-10A (CMYO10A) is a severe autosomal recessive skeletal muscle disorder characterized by generalized hypotonia, respiratory insufficiency, and poor feeding apparent from birth. Decreased fetal movements may be observed. More variable features include high-arched palate, distal joint contractures, foot deformities, scoliosis, areflexia, and dysphagia. Many patients show eventration of the diaphragm. Affected individuals become ventilator-dependent in the first months or years of life and never achieve walking; many die in childhood (Logan et al., 2011). Patients with more damaging mutations in the MEGF10 gene, including nonsense or frameshift null mutations, show the more severe phenotype (CMYO10A), whereas those with missense mutations affecting conserved cysteine residues in the EGF-like domain show the less severe phenotype with later onset of respiratory failure and minicores on muscle biopsy (CMYO10B) (Croci et al., 2022). For a discussion of genetic heterogeneity of congenital myopathy, see CMYO1A (117000).
Congenital myopathy 10b, mild variant
MedGen UID:
762102
Concept ID:
C3541476
Disease or Syndrome
Congenital myopathy-10B (CMYO10B) is an autosomal recessive skeletal muscle disorder characterized by infantile- or childhood-onset myopathy, areflexia, dysphagia, and respiratory distress that usually requires nocturnal ventilation. Other common features include facial and neck muscle weakness, feeding difficulties, contractures, scoliosis, high-arched palate, hyporeflexia, and difficulties walking. The disorder is slowly progressive and most patients follow a chronic course. Muscle biopsy shows variable findings, including type 1 fiber predominance, minicore lesions, and myofibrillar disorganization (Boyden et al., 2012; Harris et al., 2018). Patients with missense mutations affecting conserved cysteine residues in the EGF-like domain show the mild variant phenotype (CMYO10B) with later onset of respiratory failure and minicores on muscle biopsy, whereas patients with more damaging mutations, including nonsense or frameshift null mutations, show the severe variant phenotype (CMYO10A) (Croci et al., 2022). For a discussion of genetic heterogeneity of congenital myopathy, see CMYO1A (117000).
Emery-Dreifuss muscular dystrophy 7, autosomal dominant
MedGen UID:
765974
Concept ID:
C3553060
Disease or Syndrome
Emery-Dreifuss muscular dystrophy is a genetically heterogeneous muscular disease that presents with muscular dystrophy, joint contractures, and cardiomyopathy with conduction defects (summary by Liang et al., 2011). For a discussion of genetic heterogeneity of EDMD, see 310300.
Dilated cardiomyopathy 3B
MedGen UID:
777148
Concept ID:
C3668940
Disease or Syndrome
The dystrophinopathies cover a spectrum of X-linked muscle disease ranging from mild to severe that includes Duchenne muscular dystrophy, Becker muscular dystrophy, and DMD-associated dilated cardiomyopathy (DCM). The mild end of the spectrum includes the phenotypes of asymptomatic increase in serum concentration of creatine phosphokinase (CK) and muscle cramps with myoglobinuria. The severe end of the spectrum includes progressive muscle diseases that are classified as Duchenne/Becker muscular dystrophy when skeletal muscle is primarily affected and as DMD-associated DCM when the heart is primarily affected. Duchenne muscular dystrophy (DMD) usually presents in early childhood with delayed motor milestones including delays in walking independently and standing up from a supine position. Proximal weakness causes a waddling gait and difficulty climbing stairs, running, jumping, and standing up from a squatting position. DMD is rapidly progressive, with affected children being wheelchair dependent by age 12 years. Cardiomyopathy occurs in almost all individuals with DMD after age 18 years. Few survive beyond the third decade, with respiratory complications and progressive cardiomyopathy being common causes of death. Becker muscular dystrophy (BMD) is characterized by later-onset skeletal muscle weakness. With improved diagnostic techniques, it has been recognized that the mild end of the spectrum includes men with onset of symptoms after age 30 years who remain ambulatory even into their 60s. Despite the milder skeletal muscle involvement, heart failure from DCM is a common cause of morbidity and the most common cause of death in BMD. Mean age of death is in the mid-40s. DMD-associated DCM is characterized by left ventricular dilation and congestive heart failure. Females heterozygous for a DMD pathogenic variant are at increased risk for DCM.
Myofibrillar myopathy 3
MedGen UID:
811509
Concept ID:
C3714934
Disease or Syndrome
Myofibrillar myopathy refers to a genetically heterogeneous group of muscular disorders characterized by a pathologic morphologic pattern of myofibrillar degradation and abnormal accumulation of proteins involved with the sarcomeric Z disc (summary by Foroud et al., 2005). For a general phenotypic description and a discussion of genetic heterogeneity of myofibrillar myopathy, see MFM1 (601419).
Amyotrophic lateral sclerosis type 21
MedGen UID:
813851
Concept ID:
C3807521
Disease or Syndrome
Amyotrophic lateral sclerosis-21 (ALS21) is an autosomal dominant neurodegenerative disorder affecting upper and lower motor neurons, resulting in muscle weakness and respiratory failure. Some patients may develop myopathic features or dementia (summary by Johnson et al., 2014). For a discussion of genetic heterogeneity of amyotrophic lateral sclerosis, see ALS1 (105400).
Inclusion body myopathy with early-onset Paget disease with or without frontotemporal dementia 3
MedGen UID:
815799
Concept ID:
C3809469
Disease or Syndrome
Inclusion body myopathy associated with Paget disease of bone (PDB) and/or frontotemporal dementia (IBMPFD) is characterized by adult-onset proximal and distal muscle weakness (clinically resembling a limb-girdle muscular dystrophy syndrome), early-onset PDB, and premature frontotemporal dementia (FTD). Muscle weakness progresses to involve other limb and respiratory muscles. PDB involves focal areas of increased bone turnover that typically lead to spine and/or hip pain and localized enlargement and deformity of the long bones; pathologic fractures occur on occasion. Early stages of FTD are characterized by dysnomia, dyscalculia, comprehension deficits, and paraphasic errors, with minimal impairment of episodic memory; later stages are characterized by inability to speak, auditory comprehension deficits for even one-step commands, alexia, and agraphia. Mean age at diagnosis for muscle disease and PDB is 42 years; for FTD, 56 years. Dilated cardiomyopathy, amyotrophic lateral sclerosis, and Parkinson disease are now known to be part of the spectrum of findings associated with IBMPFD.
Combined oxidative phosphorylation deficiency 19
MedGen UID:
816385
Concept ID:
C3810055
Disease or Syndrome
Any combined oxidative phosphorylation deficiency in which the cause of the disease is a mutation in the LYRM4 gene.
Myopathy, tubular aggregate, 1
MedGen UID:
860163
Concept ID:
C4011726
Disease or Syndrome
Tubular aggregates in muscle, first described by Engel (1964), are structures of variable appearance consisting of an outer tubule containing either one or more microtubule-like structures or amorphous material. They are a nonspecific pathologic finding that may occur in a variety of circumstances, including alcohol- and drug-induced myopathies, exercise-induced cramps or muscle weakness, and inherited myopathies. Tubular aggregates are derived from the sarcoplasmic reticulum (Salviati et al., 1985) and are believed to represent an adaptive mechanism aimed at regulating an increased intracellular level of calcium in order to prevent the muscle fibers from hypercontraction and necrosis (Martin et al., 1997; Muller et al., 2001). Genetic Heterogeneity of Tubular Aggregate Myopathy See also TAM2 (615883), caused by mutation in the ORAI1 gene (610277) on chromosome 12q24.
Congenital myasthenic syndrome 14
MedGen UID:
864034
Concept ID:
C4015597
Disease or Syndrome
Congenital myasthenic syndrome-14 is an autosomal recessive neuromuscular disorder characterized by onset of limb-girdle muscle weakness in early childhood. The disorder is slowly progressive, and some patients may become wheelchair-bound. There is no respiratory or cardiac involvement. Treatment with anticholinesterase medication may be beneficial (summary by Cossins et al., 2013). For a discussion of genetic heterogeneity of CMS, see CMS1A (601462).
Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal recessive 1
MedGen UID:
897191
Concept ID:
C4225153
Disease or Syndrome
POLG-related disorders comprise a continuum of overlapping phenotypes that were clinically defined long before their molecular basis was known. Most affected individuals have some, but not all, of the features of a given phenotype; nonetheless, the following nomenclature can assist the clinician in diagnosis and management. Onset of the POLG-related disorders ranges from infancy to late adulthood. Alpers-Huttenlocher syndrome (AHS), one of the most severe phenotypes, is characterized by childhood-onset progressive and ultimately severe encephalopathy with intractable epilepsy and hepatic failure. Childhood myocerebrohepatopathy spectrum (MCHS) presents between the first few months of life and about age three years with developmental delay or dementia, lactic acidosis, and a myopathy with failure to thrive. Other findings can include liver failure, renal tubular acidosis, pancreatitis, cyclic vomiting, and hearing loss. Myoclonic epilepsy myopathy sensory ataxia (MEMSA) now describes the spectrum of disorders with epilepsy, myopathy, and ataxia without ophthalmoplegia. MEMSA now includes the disorders previously described as spinocerebellar ataxia with epilepsy (SCAE). The ataxia neuropathy spectrum (ANS) includes the phenotypes previously referred to as mitochondrial recessive ataxia syndrome (MIRAS) and sensory ataxia neuropathy dysarthria and ophthalmoplegia (SANDO). About 90% of persons in the ANS have ataxia and neuropathy as core features. Approximately two thirds develop seizures and almost one half develop ophthalmoplegia; clinical myopathy is rare. Autosomal recessive progressive external ophthalmoplegia (arPEO) is characterized by progressive weakness of the extraocular eye muscles resulting in ptosis and ophthalmoparesis (or paresis of the extraocular muscles) without associated systemic involvement; however, caution is advised because many individuals with apparently isolated arPEO at the onset develop other manifestations of POLG-related disorders over years or decades. Of note, in the ANS spectrum the neuropathy commonly precedes the onset of PEO by years to decades. Autosomal dominant progressive external ophthalmoplegia (adPEO) typically includes a generalized myopathy and often variable degrees of sensorineural hearing loss, axonal neuropathy, ataxia, depression, parkinsonism, hypogonadism, and cataracts (in what has been called "chronic progressive external ophthalmoplegia plus," or "CPEO+").
Myopathy, reducing body, X-linked, childhood-onset
MedGen UID:
904593
Concept ID:
C4225159
Disease or Syndrome
Reducing-body myopathy (RBM) is a rare myopathy characterized pathologically by the presence of intracytoplasmic inclusion bodies strongly stained by menadione-linked alpha-glycerophosphate dehydrogenase (MAG) in the absence of substrate, alpha-glycerophosphate. The term 'reducing body' refers to the reducing activity of the inclusions to nitroblue tetrazolium (NBT) in the absence of substrate. This condition is also commonly associated with rimmed vacuoles and cytoplasmic bodies. The clinical features of RBM are variable; a severe form has onset in infancy or early childhood and results in severe disability or early death (RBMX1A; 300717), and a less severe form has onset in late childhood or adulthood (RBMX1B) (summary by Liewluck et al., 2007 and Shalaby et al., 2009).
Spinal muscular atrophy with congenital bone fractures 2
MedGen UID:
907910
Concept ID:
C4225176
Disease or Syndrome
Spinal muscular atrophy with congenital bone fractures is an autosomal recessive severe neuromuscular disorder characterized by onset of severe hypotonia with fetal hypokinesia in utero. This results in congenital contractures, consistent with arthrogryposis multiplex congenita, and increased incidence of prenatal fracture of the long bones. Affected infants have difficulty breathing and feeding and often die in the first days or months of life (summary by Knierim et al., 2016). For a discussion of genetic heterogeneity of spinal muscular atrophy with congenital bone fractures, see SMABF1 (616866).
Spinal muscular atrophy with congenital bone fractures 1
MedGen UID:
896011
Concept ID:
C4225177
Disease or Syndrome
Spinal muscular atrophy with congenital bone fractures is an autosomal recessive severe neuromuscular disorder characterized by onset of severe hypotonia with fetal hypokinesia in utero. This results in congenital contractures, consistent with arthrogryposis multiplex congenita, and increased incidence of prenatal fracture of the long bones. Affected infants have difficulty breathing and feeding and often die in the first days or months of life (summary by Knierim et al., 2016). Genetic Heterogeneity of Spinal Muscular Atrophy With Congenital Bone Fractures See also SMABF2 (616867), caused by mutation in the ASCC1 gene (614215) on chromosome 10q22.
Progressive scapulohumeroperoneal distal myopathy
MedGen UID:
905125
Concept ID:
C4225181
Disease or Syndrome
Scapulohumeroperoneal myopathy is an autosomal dominant muscle disorder characterized by slowly progressive muscle weakness and atrophy affecting both proximal and distal muscles of the upper and lower limbs. Onset is usually in the first decade and can be as early as infancy, although some patients do not notice symptoms until young adulthood. There is marked variability in severity (summary by Zukosky et al., 2015).
Severe hypotonia-psychomotor developmental delay-strabismus-cardiac septal defect syndrome
MedGen UID:
902080
Concept ID:
C4225196
Disease or Syndrome
Severe hypotonia-psychomotor developmental delay-strabismus-cardiac septal defect syndrome is a rare, genetic, non-dystrophic congenital myopathy disorder characterized by a neonatal-onset of severe generalized hypotonia associated with mild psychomotor delay, congenital strabismus with abducens nerve palsy, and atrial and/or ventricular septal defects. Cryptorchidism is commonly reported in male patients and muscle biopsy typically reveals increased variability in muscle fiber size.
Congenital myasthenic syndrome 19
MedGen UID:
897962
Concept ID:
C4225235
Disease or Syndrome
Congenital myasthenic syndrome-19 (CMS19) is an autosomal recessive disorder resulting from a defect in the neuromuscular junction, causing generalized muscle weakness, exercise intolerance, and respiratory insufficiency. Patients present with hypotonia, feeding difficulties, and respiratory problems soon after birth, but the severity of the weakness and disease course is variable (summary by Logan et al., 2015). For a discussion of genetic heterogeneity of CMS, see CMS1A (601462).
Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A9
MedGen UID:
902513
Concept ID:
C4225291
Disease or Syndrome
Congenital muscular dystrophy-dystroglycanopathy with brain and eye anomalies (type A) is an autosomal recessive disorder with characteristic brain and eye malformations, profound mental retardation, and congenital muscular dystrophy. The phenotype includes the alternative clinical designation Walker-Warburg syndrome (WWS), which is associated with death in infancy. The disorder represents the most severe end of a phenotypic spectrum of similar disorders resulting from defective glycosylation of alpha-dystroglycan (DAG1), collectively known as 'dystroglycanopathies' (summary by Geis et al., 2013 and Riemersma et al., 2015). For a general phenotypic description and a discussion of genetic heterogeneity of muscular dystrophy-dystroglycanopathy type A, see MDDGA1 (236670).
Lethal congenital contracture syndrome 9
MedGen UID:
903881
Concept ID:
C4225303
Disease or Syndrome
Lethal congenital contracture syndrome-9 (LCCS9) is an autosomal recessive disorder characterized by multiple flexion and extension contractures resulting from reduced or absent fetal movement (Ravenscroft et al., 2015). For a general phenotypic description and discussion of genetic heterogeneity of lethal congenital contracture syndrome, see LCCS1 (253310).
Bethlem myopathy 2
MedGen UID:
907426
Concept ID:
C4225313
Disease or Syndrome
Bethlem myopathy-2 (BTHLM2) is characterized by congenital hypotonia and myopathy. Motor development is delayed, but muscle strength improves with age, and patients are able to achieve ambulation. Proximal joint contractures that improve over time, as well as joint hyperlaxity, are also present. Muscle biopsy shows mild variability in fiber diameter, without degeneration or regeneration (Zou et al., 2014; Hicks et al., 2014). For a discussion of genetic heterogeneity of Bethlem myopathy, see BTHLM1 (158810).
Ullrich congenital muscular dystrophy 2
MedGen UID:
899150
Concept ID:
C4225314
Disease or Syndrome
Ullrich congenital muscular dystrophy-2 (UCMD2) is a severe autosomal recessive disorder characterized by joint hypermobility, proximal contractures, and muscle weakness precluding ambulation (summary by Zou et al., 2014). For a discussion of genetic heterogeneity of Ullrich congenital muscular dystrophy, see UCMD1A (254090).
Congenital myasthenic syndrome 2A
MedGen UID:
908185
Concept ID:
C4225374
Disease or Syndrome
Slow-channel congenital myasthenic syndrome (SCCMS) is a disorder of the postsynaptic neuromuscular junction (NMJ) characterized by early-onset progressive muscle weakness. The disorder results from kinetic abnormalities of the acetylcholine receptor channel, specifically from prolonged opening and activity of the channel, which causes prolonged synaptic currents resulting in a depolarization block. This is associated with calcium overload, which may contribute to subsequent degeneration of the endplate and postsynaptic membrane. Treatment with quinine, quinidine, or fluoxetine may be helpful; cholinesterase inhibitors and amifampridine should be avoided (summary by Engel et al., 2015). For a discussion of genetic heterogeneity of CMS, see CMS1A (601462).
Myopathy, reducing body, X-linked, early-onset, severe
MedGen UID:
906731
Concept ID:
C4225423
Disease or Syndrome
Reducing-body myopathy (RBM) is a rare myopathy characterized pathologically by the presence of intracytoplasmic inclusion bodies strongly stained by menadione-linked alpha-glycerophosphate dehydrogenase (MAG) in the absence of substrate, alpha-glycerophosphate. The term 'reducing body' refers to the reducing activity of the inclusions to nitroblue tetrazolium (NBT) in the absence of substrate. This condition is also commonly associated with rimmed vacuoles and cytoplasmic bodies. The clinical features of RBM are variable; a severe form has onset in infancy or early childhood and results in severe disability or early death, and a less severe form has onset in late childhood or adulthood (RBMX1B; 300718) (summary by Liewluck et al., 2007 and Shalaby et al., 2009).
Optic atrophy 11
MedGen UID:
934595
Concept ID:
C4310628
Disease or Syndrome
Optic atrophy-11 (OPA11) is an autosomal recessive disorder characterized by delayed psychomotor development, intellectual disability, ataxia, optic atrophy, and leukoencephalopathy on brain imaging. Laboratory studies are consistent with mitochondrial dysfunction (summary by Hartmann et al., 2016). For a discussion of genetic heterogeneity of optic atrophy, see OPA1 (165500).
Myoclonus, intractable, neonatal
MedGen UID:
934625
Concept ID:
C4310658
Disease or Syndrome
Neonatal intractable myoclonus (NEIMY) is a severe neurologic disorder characterized by the onset of intractable myoclonic seizures soon after birth. Affected infants have intermittent apnea, abnormal eye movements, pallor of the optic nerve, and lack of developmental progress. Brain imaging shows a progressive leukoencephalopathy. Some patients may die in infancy. There is phenotypic and biochemical evidence of mitochondrial dysfunction (summary by Duis et al., 2016).
Lethal left ventricular non-compaction-seizures-hypotonia-cataract-developmental delay syndrome
MedGen UID:
934628
Concept ID:
C4310661
Disease or Syndrome
Combined oxidative phosphorylation deficiency-31 is an autosomal recessive multisystem disorder characterized by left ventricular noncompaction (LVNC), global developmental delay, and severe hypotonia. More variable features include seizures, cataract, and abnormal movements. The disorder becomes apparent soon after birth or in early infancy, and patients may die in early childhood. Biochemical studies are consistent with a defect in mitochondrial function (summary by Eldomery et al., 2016). For a discussion of genetic heterogeneity of combined oxidative phosphorylation deficiency, see COXPD1 (609060).
Myofibrillar myopathy 7
MedGen UID:
934678
Concept ID:
C4310711
Disease or Syndrome
Myofibrillar myopathy-7 (MFM7) is an autosomal recessive muscle disorder characterized by early childhood onset of slowly progressive muscle weakness that primarily affects the lower limbs and is associated with joint contractures (summary by Straussberg et al., 2016). For a general phenotypic description and a discussion of genetic heterogeneity of myofibrillar myopathy, see MFM1 (601419).
Congenital muscular dystrophy-respiratory failure-skin abnormalities-joint hyperlaxity syndrome
MedGen UID:
934703
Concept ID:
C4310736
Disease or Syndrome
A rare congenital muscular dystrophy characterised by neonatal hypotonia, life-threatening respiratory failure and feeding difficulties, furthermore by delayed motor development, severe muscle weakness predominantly affecting axial muscles (leading to poor head control, rigid cervical spine, and severe scoliosis), generalised joint laxity with no or mild contractures, as well as dry skin with follicular hyperkeratosis. Serum creatine kinase is normal or slightly elevated. Muscle biopsy shows fibre size variability, rounded fibres with mild increase of endomysial connective tissue and adipose replacement, abundant minicore lesions, increase of centrally located nuclei, angular fibres and cap lesions.
Charcot-Marie-Tooth disease axonal type 2CC
MedGen UID:
934757
Concept ID:
C4310790
Disease or Syndrome
Axonal Charcot-Marie-Tooth disease type 2CC is an autosomal dominant peripheral neuropathy that predominantly affects the lower limbs, resulting in muscle weakness and atrophy and gait impairment. Other features include distal sensory impairment and less severe involvement of the upper limbs. The age at onset and severity are variable (summary by Rebelo et al., 2016). For a phenotypic description and a discussion of genetic heterogeneity of axonal CMT type 2, see CMT2A (118210).
Autosomal recessive limb-girdle muscular dystrophy type 2Y
MedGen UID:
1385152
Concept ID:
C4511482
Disease or Syndrome
Autosomal recessive myopathy with rigid spine and distal joint contractures (MRRSDC) is characterized by onset of slowly progressive muscle weakness in the first or second decades of life. There is initial involvement of the proximal lower limbs, followed by distal upper and lower limb muscle weakness and atrophy. Other features include joint contractures, rigid spine, and restricted pulmonary function; some patients may have mild cardiac involvement (summary by Kayman-Kurekci et al., 2014).
Combined oxidative phosphorylation defect type 8
MedGen UID:
1377817
Concept ID:
C4518839
Disease or Syndrome
Combined oxidative phosphorylation deficiency-8 (COXPD8) is an autosomal recessive disorder caused by dysfunction of the mitochondrial respiratory chain. The main clinical manifestation is a lethal infantile hypertrophic cardiomyopathy, but there may also be subtle skeletal muscle and brain involvement. Biochemical studies show combined respiratory chain complex deficiencies in complexes I, III, and IV in cardiac muscle, skeletal muscle, and brain. The liver is not affected (summary by Gotz et al., 2011). For a discussion of genetic heterogeneity of combined oxidative phosphorylation deficiency, see COXPD1 (609060).
Mitochondrial myopathy-cerebellar ataxia-pigmentary retinopathy syndrome
MedGen UID:
1620960
Concept ID:
C4540096
Disease or Syndrome
Mitochondrial myopathy and ataxia (MMYAT) is an autosomal recessive mtDNA depletion disorder characterized by cerebellar ataxia, congenital muscle involvement with histologic findings ranging from myopathic to dystrophic, and pigmentary retinopathy (summary by Donkervoort et al., 2019).
Myopathy, centronuclear, 6, with fiber-type disproportion
MedGen UID:
1627492
Concept ID:
C4540345
Disease or Syndrome
Centronuclear myopathy-6 with fiber-type disproportion (CNM6) is an autosomal recessive, slowly progressive congenital myopathy with onset in infancy or early childhood. Patients may be hypotonic at birth, but all show delayed motor development and walking difficulties due to muscle weakness mainly affecting the proximal lower and upper limbs. Other features include scapular winging, scoliosis, and mildly decreased respiratory vital capacity. The phenotype and muscle biopsy abnormalities are variable, although centralized nuclei and fiber-type disproportion appear to be a common finding on muscle biopsy (summary by Vasli et al., 2017). For a discussion of genetic heterogeneity of centronuclear myopathy, see CNM1 (160150).
Hypotonia, ataxia, developmental delay, and tooth enamel defect syndrome
MedGen UID:
1647427
Concept ID:
C4693578
Disease or Syndrome
An autosomal dominant condition caused by mutations(s) in the CTBP1 gene, encoding C-terminal-binding protein 1. It is characterized by hypotonia, ataxia, developmental delay, and tooth enamel defects.
Muscular dystrophy, limb-girdle, autosomal dominant 4
MedGen UID:
1648316
Concept ID:
C4748295
Disease or Syndrome
Autosomal dominant limb-girdle muscular dystrophy-4 (LGMDD4) is characterized by onset of proximal muscle weakness in young adulthood. Affected individuals often have gait difficulties; some may have upper limb involvement. Other features include variably increased serum creatine kinase, myalgia, and back pain. The severity and expressivity of the disorder is highly variable, even within families (summary by Vissing et al., 2016). For a discussion of genetic heterogeneity of autosomal dominant limb-girdle muscular dystrophy, see 603511.
Muscular dystrophy, limb-girdle, autosomal recessive 23
MedGen UID:
1648462
Concept ID:
C4748327
Disease or Syndrome
The clinical manifestations of LAMA2 muscular dystrophy (LAMA2-MD) comprise a continuous spectrum ranging from severe congenital muscular dystrophy type 1A (MDC1A) to milder late-onset LAMA2-MD. MDC1A is typically characterized by neonatal profound hypotonia, poor spontaneous movements, and respiratory failure. Failure to thrive, gastroesophageal reflux, aspiration, and recurrent chest infections necessitating frequent hospitalizations are common. As disease progresses, facial muscle weakness, temporomandibular joint contractures, and macroglossia may further impair feeding and can affect speech. In late-onset LAMA2-MD onset of manifestations range from early childhood to adulthood. Affected individuals may show muscle hypertrophy and develop a rigid spine syndrome with joint contractures, usually most prominent in the elbows. Progressive respiratory insufficiency, scoliosis, and cardiomyopathy can occur.
Congenital myopathy with reduced type 2 muscle fibers
MedGen UID:
1672638
Concept ID:
C5193081
Disease or Syndrome
Congenital myopathy-14 (CMYO14) is an autosomal recessive skeletal muscle disorder characterized by onset of severe muscle weakness apparent at birth and sometimes in utero. Affected infants have difficulty breathing independently and usually require mechanical ventilation for variable lengths of time. Other features include delayed motor development with delayed walking, hypo- or areflexia, and high-arched palate. Skeletal muscle biopsy shows variation in fiber size with specific atrophy of the fast-twitch type II fibers. Cardiac muscle is not affected (summary by Ravenscroft et al., 2018). For a discussion of genetic heterogeneity of congenital myopathy, see CMYO1A (117000).
Arthrogryposis multiplex congenita 3, myogenic type
MedGen UID:
1680655
Concept ID:
C5193121
Disease or Syndrome
Myogenic-type arthrogryposis multiplex congenita-3 (AMC3) is an autosomal recessive disorder characterized by decreased fetal movements, hypotonia, variable skeletal defects, including clubfoot and scoliosis, and delayed motor milestones with difficulty walking (summary by Baumann et al., 2017).
Myopathy, distal, 6, adult-onset, autosomal dominant
MedGen UID:
1684760
Concept ID:
C5203349
Disease or Syndrome
Autosomal dominant adult-onset distal myopathy-6 (MPD6) is a muscle disorder characterized by slowly progressive distal muscle weakness, primarily affecting the lower limbs and resulting in gait difficulties. Some patients develop involvement of proximal and upper limb muscles (summary by Savarese et al., 2019)
Oculopharyngodistal myopathy 1
MedGen UID:
1684682
Concept ID:
C5231388
Disease or Syndrome
Oculopharyngodistal myopathy-1 (OPDM1) is an autosomal dominant disorder characterized by adult-onset ptosis, external ophthalmoplegia, facial muscle weakness, distal limb muscle weakness and atrophy, and pharyngeal involvement, resulting in dysphagia and dysarthria. Skeletal muscle biopsy shows myopathic changes with rimmed vacuoles. There are variable manifestations of the disorder regarding muscle involvement and severity (summary by Ishiura et al., 2019). Genetic Heterogeneity of Oculopharyngodistal Myopathy See also OPDM2 (618940), caused by trinucleotide repeat expansion in the GIPC1 gene (605072) on chromosome 19p13; OPDM3 (619473), caused by trinucleotide repeat expansion in the NOTCH2NLC gene (618025) on chromosome 1q21; and OPDM4 (619790), caused by trinucleotide repeat expansion in the RILPL1 gene (614092) on chromosome 12q24. Oculopharyngeal muscular dystrophy (OPMD; 164300) is a similar disorder with overlapping features. It is caused by a similar heterozygous trinucleotide repeat expansion in the PABPN1 gene (602279) (summary by Durmus et al., 2011).
Myopathy, congenital, with structured cores and z-line abnormalities
MedGen UID:
1684705
Concept ID:
C5231445
Disease or Syndrome
Congenital myopathy-8 (CMYO8) is an autosomal dominant disorder of the skeletal muscle characterized by hypotonia and delayed motor development apparent from infancy or childhood, resulting in difficulties walking or loss of ambulation within the first few decades. Affected individuals show respiratory insufficiency, high-arched palate, and scoliosis; external ophthalmoplegia may also be present. Skeletal muscle biopsy shows cores and myofibrillar disorganization (Lornage et al., 2019). For a discussion of genetic heterogeneity of congenital myopathy, see CMYO1A (117000).
Muscular dystrophy, limb-girdle, autosomal recessive 26
MedGen UID:
1718449
Concept ID:
C5394268
Disease or Syndrome
Autosomal recessive limb-girdle muscular dystrophy-26 (LGMDR26) is a muscle disorder characterized by adult-onset weakness that primarily affects the proximal muscles of the lower limbs. The disorder is slowly progressive, with later involvement of the upper limbs and fatty replacement of muscle tissue apparent on MRI. Some patients may have calf hypertrophy. Serum creatine kinase is significantly elevated, and skeletal muscle biopsy shows typical dystrophic features with normal ultrastructural findings. There is no cardiac or respiratory involvement (summary by Vissing et al., 2019). For a discussion of genetic heterogeneity of autosomal recessive limb-girdle muscular dystrophy, see LGMDR1 (253600).
Oculopharyngodistal myopathy 2
MedGen UID:
1718769
Concept ID:
C5394548
Disease or Syndrome
Oculopharyngodistal myopathy-2 (OPDM2) is an autosomal dominant muscle disorder characterized by onset of distal muscle weakness, mainly of the lower limbs, and/or ophthalmoplegia in the second or third decades of life. The disorder is slowly progressive, and patients develop facial weakness, bulbar weakness, and difficulty walking or climbing stairs. Some patients may have upper limb involvement and subclinical respiratory insufficiency. Laboratory studies show increased serum creatine kinase; skeletal muscle biopsy shows myopathic changes with abnormal cytoplasmic and intranuclear inclusions (summary by Deng et al., 2020). For a discussion of genetic heterogeneity of OPDM, see OPDM1 (164310).
Myopathy, distal, with rimmed vacuoles
MedGen UID:
1728314
Concept ID:
C5399975
Disease or Syndrome
Distal myopathy with rimmed vacuoles (DMRV) is an autosomal dominant myopathic disorder characterized by adult onset of muscle weakness affecting the distal upper and lower limbs, which may result in walking difficulties, as well as proximal weakness of the shoulder girdle muscles. Muscle biopsy shows rimmed vacuoles (summary by Bucelli et al., 2015).
Cardioencephalomyopathy, fatal infantile, due to cytochrome c oxidase deficiency 1
MedGen UID:
1748867
Concept ID:
C5399977
Disease or Syndrome
Mitochondrial complex IV deficiency nuclear type 2 (MC4DN2) is an autosomal recessive multisystem metabolic disorder characterized by the onset of symptoms at birth or in the first weeks or months of life. Affected individuals have severe hypotonia, often associated with feeding difficulties and respiratory insufficiency necessitating tube feeding and mechanical ventilation. The vast majority of patients develop hypertrophic cardiomyopathy in the first days or weeks of life, which usually leads to death in infancy or early childhood. Patients also show neurologic abnormalities, including developmental delay, nystagmus, fasciculations, dystonia, EEG changes, and brain imaging abnormalities compatible with a diagnosis of Leigh syndrome (see 256000). There may also be evidence of systemic involvement with hepatomegaly and myopathy, although neurogenic muscle atrophy is more common and may resemble spinal muscular atrophy type I (SMA1; 253300). Serum lactate is increased, and laboratory studies show decreased mitochondrial complex IV protein and activity levels in various tissues, including heart and skeletal muscle. Most patients die in infancy of cardiorespiratory failure (summary by Papadopoulou et al., 1999). For a discussion of genetic heterogeneity of mitochondrial complex IV (cytochrome c oxidase) deficiency, see 220110.
Frontotemporal dementia and/or amyotrophic lateral sclerosis 6
MedGen UID:
1759760
Concept ID:
C5436279
Disease or Syndrome
Frontotemporal dementia and/or amyotrophic lateral sclerosis-6 (FTDALS6) is an autosomal dominant neurodegenerative disorder with highly variable manifestations. Some patients present in adulthood with progressive FTD, often classified as the 'behavioral variant,' which is characterized by reduced empathy, impulsive behavior, personality changes, and reduced verbal output. Other patients present with features of amyotrophic lateral sclerosis (ALS), which is a fatal neurodegenerative disease characterized by upper and lower motor neuron dysfunction resulting in rapidly progressive paralysis and death from respiratory failure. The pathologic hallmarks of this disease include pallor of the corticospinal tract due to loss of motor neurons (in ALS). In both ALS and FTD, there are ubiquitin-positive inclusions within surviving neurons as well as deposition of pathologic TDP43 (TARDBP; 605078) or p62 (SQSTM1; 601530) aggregates. Patients with a D395G mutation (601023.0014) have been shown to develop pathologic tau (MAPT; 157140) aggregates. Some patients with the disorder may have features of both diseases, and there is significant interfamilial and intrafamilial phenotypic variability (summary by Johnson et al., 2010; Wong et al., 2018; Al-Obeidi et al., 2018; Darwich et al., 2020). For a general phenotypic description and a discussion of genetic heterogeneity of FTDALS, see FTDALS1 (105550).
Muscular dystrophy-dystroglycanopathy (congenital with impaired intellectual development), type B, 15
MedGen UID:
1755743
Concept ID:
C5436552
Disease or Syndrome
Congenital muscular dystrophy-dystroglycanopathy with impaired intellectual development (MDDGB15) is characterized by elevated serum creatine kinase, developmental delay, epilepsy, impaired intellectual development, and brain abnormalities (Fu et al., 2019). For a discussion of genetic heterogeneity of congenital muscular dystrophy-dystroglycanopathy type B, see MDDGB1 (613155).
Neurodevelopmental disorder with progressive spasticity and brain white matter abnormalities
MedGen UID:
1736667
Concept ID:
C5436628
Disease or Syndrome
Neurodevelopmental disorder with progressive spasticity and brain white matter abnormalities (NEDSWMA) is an autosomal recessive disorder characterized by impaired psychomotor development apparent in infancy. Affected individuals show poor overall growth, progressive microcephaly, and axial hypotonia, with later onset of spasticity. The disorder is progressive. Some patients show normal early development, but later have regression of motor, cognitive, and language skills. More variable features include seizures, joint contractures, ocular disturbances, episodic respiratory failure, and nonspecific dysmorphic facial features. The intellectual impairment is variable, ranging from poor visual contact with inability to walk or speak to milder intellectual disability with the ability to say some words. Brain imaging shows variable white matter abnormalities, including thin corpus callosum and poor myelination (summary by Husain et al., 2020).
Spinal muscular atrophy, infantile, James type
MedGen UID:
1764556
Concept ID:
C5436669
Disease or Syndrome
The phenotypic spectrum of GARS1-associated axonal neuropathy ranges from GARS1 infantile-onset SMA (GARS1-iSMA) to GARS1 adolescent- or early adult-onset hereditary motor/sensory neuropathy (GARS1-HMSN). GARS1-iSMA. Age of onset ranges from the neonatal period to the toddler years. Initial manifestations are typically respiratory distress, poor feeding, and muscle weakness (distal greater than proximal). Weakness is slowly progressive, ultimately requiring mechanical ventilation and feeding via gastrostomy tube. GARS1-HMSN. Age of onset is most commonly during the second decade (range eight to 36 years). Initial manifestations are typically muscle weakness in the hands sometimes with sensory deficits. Lower limb involvement (seen in ~50% of individuals) ranges from weakness and atrophy of the extensor digitorum brevis and weakness of toe dorsiflexors to classic peroneal muscular atrophy with foot drop and a high steppage gait.
Mitochondrial complex 4 deficiency, nuclear type 21
MedGen UID:
1732562
Concept ID:
C5436727
Disease or Syndrome
Mitochondrial complex IV deficiency nuclear type 21 (MC4DN21) is an autosomal recessive multisystem metabolic disorder characterized by the onset of symptoms in infancy. Affected individuals present with congenital lactic acidosis and later show global developmental delay with delayed speech and learning disabilities. Additional features include motor dysfunction manifest as spasticity, dystonia, and pyramidal tract signs. Ataxia, peripheral neuropathy, and seizures may also occur. Brain imaging shows T2-weighted hyperintensities in subcortical regions, consistent with a clinical diagnosis of Leigh syndrome (see 256000). Patient tissues show variably decreased levels and activity of mitochondrial respiratory complex IV (Pitceathly et al., 2013). For a discussion of genetic heterogeneity of mitochondrial complex IV (cytochrome c oxidase) deficiency, see 220110.
Neurodegeneration, childhood-onset, with hypotonia, respiratory insufficiency, and brain imaging abnormalities
MedGen UID:
1781967
Concept ID:
C5543020
Disease or Syndrome
Neuronal ceroid lipofuscinosis-15 (CLN15) is characterized by severe global developmental delay apparent in infancy or early childhood. Affected individuals have hypotonia with impaired motor development, respiratory insufficiency, and feeding difficulties requiring intervention. Intellectual and speech development is also delayed, and most have visual defects, including cortical visual blindness, nystagmus, and esotropia. The disorder is progressive, as manifest by developmental regression consistent with neurodegeneration. Although overt seizures are not observed, some patients may have episodic hypertonia or apnea, and EEG may show nonspecific abnormalities. Brain imaging shows unique diffusion restriction signal abnormalities affecting the brainstem, cerebellum, and corticospinal tracts. Early death may occur (summary by Polovitskaya et al., 2020).
Myofibrillar myopathy 11
MedGen UID:
1782465
Concept ID:
C5543038
Disease or Syndrome
Myofibrillar myopathy-11 (MFM11) is an autosomal recessive skeletal muscle disorder characterized by onset of slowly progressive proximal muscle weakness in the first decade of life. Some patients may present at birth with hypotonia and feeding difficulties, whereas others present later in mid-childhood. Although most patients show delayed walking at 2 to 3 years, all remain ambulatory into adulthood. More variable features may include decreased respiratory forced vital capacity, variable cardiac features, and calf hypertrophy. Skeletal muscle biopsy shows myopathic changes with variation in fiber size, type 1 fiber predominance, centralized nuclei, eccentrically placed core-like lesions, and distortion of the myofibrillary pattern with Z-line streaming and abnormal myofibrillar aggregates or inclusions (summary by Donkervoort et al., 2020). For a phenotypic description and a discussion of genetic heterogeneity of myofibrillar myopathy, see MFM1 (601419).
Arthrogryposis multiplex congenita 6
MedGen UID:
1786758
Concept ID:
C5543431
Disease or Syndrome
Arthrogryposis multiplex congenita-6 (AMC6) is a severe autosomal recessive disorder of skeletal muscle with onset of symptoms in utero. The pregnancies are usually complicated by polyhydramnios and reduced fetal movements. Affected individuals have congenital joint contractures, dysmorphic facial features, distal skeletal anomalies with clenched hands and clubfeet, and edema with fetal hydrops. Fetal demise or termination of pregnancy often occurs after ultrasound detection of abnormalities. Those that survive to birth have significant hypotonia with absent spontaneous movements, respiratory insufficiency, arthrogryposis, and multiple pterygia. Skeletal muscle is hypoplastic, immature, and underdeveloped, with nemaline rods, poorly developed sarcomeres, and poor cross-striation. Death in infancy usually occurs (summary by Ahmed et al., 2018, Rocha et al., 2021). For a discussion of genetic heterogeneity of AMC, see AMC1 (617468).
Myasthenic syndrome, congenital, 7B, presynaptic, autosomal recessive
MedGen UID:
1794157
Concept ID:
C5561947
Disease or Syndrome
Autosomal recessive presynaptic congenital myasthenic syndrome-7B (CMS7B) is characterized by severe generalized muscle weakness apparent from birth; decreased fetal movements may be apparent in utero. Affected infants have generalized hypotonia with poor cry and feeding, head lag, and facial muscle weakness with ptosis. Some patients may have respiratory involvement. Electrophysiologic studies show decreased compound muscle action potentials (CMAPs) and a decremental response to repetitive nerve stimulation. Treatment with 3,4-diaminopyridine and pyridostigmine may result in clinical improvement (summary by Bauche et al., 2020).
Oculopharyngodistal myopathy 3
MedGen UID:
1794166
Concept ID:
C5561956
Disease or Syndrome
Oculopharyngodistal myopathy-3 (OPDM3) is a neuromyodegenerative disease characterized by progressive muscle weakness with ocular, facial, pharyngeal, and distal limb involvement, resulting in dysarthria and gait difficulties. The onset of the disorder is usually in adulthood, although childhood onset has rarely been reported. Additional features include hyporeflexia, proximal muscle weakness, neck muscle weakness, dysarthria, dysphagia, and ptosis. Some patients may develop pigmentary retinopathy, peripheral neuropathy, or hearing loss. Cognition is usually not affected, but there may be deficits or psychiatric manifestations. Brain imaging tends to show a leukoencephalopathy, often with a characteristic linear signal along the corticomedullary junction on brain imaging. Skin and muscle biopsy show intranuclear inclusions and rimmed vacuoles. Many of the clinical features are reminiscent of NIID, suggesting that these disorders likely fall within a broad phenotypic spectrum of diseases with neuromyodegenerative features associated with abnormal repeat expansions in this gene (summary by Ogasawara et al., 2020 and Yu et al., 2021). For a discussion of genetic heterogeneity of OPDM, see OPDM1 (164310).
Muscular dystrophy, limb-girdle, autosomal recessive 27
MedGen UID:
1794212
Concept ID:
C5562002
Disease or Syndrome
Autosomal recessive limb-girdle muscular dystrophy-27 (LGMDR27) is characterized by progressive muscle weakness primarily affecting the lower limbs and resulting in walking difficulty or loss of ambulation. The age at onset is highly variable, from infancy to young adulthood. Patients with infantile onset may have a more severe disease course with rapid progression. Upper limb involvement and distal muscle weakness may also occur. Additional more variable features include neck muscle weakness, scoliosis, and joint contractures. Less common features include impaired intellectual development or speech delay, cardiomyopathy, and cardiac arrhythmia. Muscle biopsy shows nonspecific dystrophic changes (Coppens et al., 2021). For a discussion of genetic heterogeneity of autosomal recessive limb-girdle muscular dystrophy, see LGMDR1 (253600).
Autosomal recessive limb-girdle muscular dystrophy type 2X
MedGen UID:
1799561
Concept ID:
C5568138
Disease or Syndrome
Autosomal recessive limb-girdle muscular dystrophy-25 (LGMDR25) is characterized by slowly progressive onset of proximal lower limb weakness in adulthood. Affected individuals also develop cardiac arrhythmias resulting in syncopal episodes as young adults or later in life (summary by Schindler et al., 2016). For a discussion of genetic heterogeneity of autosomal recessive limb-girdle muscular dystrophy (LGMD), see LGMDR1 (253600).
NEK9-related lethal skeletal dysplasia
MedGen UID:
1799564
Concept ID:
C5568141
Disease or Syndrome
Lethal congenital contracture syndrome-10 (LCCS10) is an autosomal recessive disorder characterized by fetal akinesia, multiple contractures, shortening of upper and lower limbs, and narrow chest and thorax. Death occurs in utero or soon after birth (Casey et al., 2016). For a general phenotypic description and a discussion of genetic heterogeneity of lethal congenital contracture syndrome, see LCCS1 (253310).
Myopathy, distal, 7, adult-onset, X-linked
MedGen UID:
1808663
Concept ID:
C5676880
Disease or Syndrome
X-linked adult-onset distal myopathy-7 (MPD7) is an X-linked recessive disorder that affects only males. It is characterized by onset of distal muscle weakness predominantly affecting the lower limbs between 20 and 60 years of age. The disorder is slowly progressive, with most affected individuals developing distal upper limb involvement and some developing proximal muscle involvement, although patients remain ambulatory. Muscle biopsy shows variable myopathic changes as well as sarcoplasmic inclusions that may represent abnormally aggregated proteins (summary by Johari et al., 2021).
Inclusion body myopathy and brain white matter abnormalities
MedGen UID:
1812978
Concept ID:
C5676909
Disease or Syndrome
Inclusion body myopathy and brain white matter abnormalities (IBMWMA) is an autosomal dominant adult-onset disorder characterized predominantly by proximal limb girdle muscle weakness affecting the lower and upper limbs and resulting in gait difficulties and scapular winging. Additional features may include dysarthria, dysphagia, low back pain, and hyporeflexia. EMG is consistent with a myopathic process, although neuropathic findings have also been shown. Muscle biopsy shows fiber type variation, internal nuclei, rimmed vacuoles, and cytoplasmic protein aggregates or inclusions. Serum creatine kinase is usually elevated. Cognitive impairment or frontotemporal dementia occurs in some patients. The disorder is slowly progressive; some patients become wheelchair-bound after many years. Rare patients with this mutation develop ALS; some have both myopathy and ALS. Brain imaging shows white matter abnormalities using diffusion tensor imaging. The disorder is classified as multisystem proteinopathy-6 (MSP6) due to the characteristic disease mechanism of protein misfolding and abnormal tissue deposition (summary by Leoni et al., 2021).
Oculopharyngodistal myopathy 4
MedGen UID:
1809981
Concept ID:
C5676941
Disease or Syndrome
Oculopharyngodistal myopathy-4 (OPDM4) is an autosomal dominant neuromuscular disorder characterized by progressive ptosis, ophthalmoparesis, facial and masseter weakness, and muscle weakness of the distal limbs. Initial symptoms of the disorder, ptosis and limited eye movements, most commonly appear in the second or third decades. There is slow progression with development of dysarthria, dysphagia, and distal limb weakness and atrophy associated with absent deep tendon reflexes; sensation is normal. Serum creatine kinase is often increased, and skeletal muscle biopsy typically shows chronic myopathic changes with rimmed vacuoles and filamentous intranuclear inclusions (summary by Yu et al., 2022). For a discussion of genetic heterogeneity of OPDM, see OPDM1 (164310).
Myopathy with myalgia, increased serum creatine kinase, and with or without episodic rhabdomyolysis
MedGen UID:
1824033
Concept ID:
C5774260
Disease or Syndrome
Myopathy with myalgia, increased serum creatine kinase, and with or without episodic rhabdomyolysis-1 (MMCKR1) is an autosomal recessive skeletal muscle disorder characterized by the onset of muscle cramping and stiffness on exertion in infancy or early childhood, although later (even adult) onset has also been reported. The features remit with rest, but some individuals develop mild proximal or distal muscle weakness. Rare affected individuals may demonstrate cardiac involvement, including left ventricular dysfunction or rhythm abnormalities. Laboratory studies show increased baseline serum creatine kinase levels with episodic spikes that may coincide with rhabdomyolysis. EMG shows myopathic changes, and muscle biopsy shows nonspecific myopathic or degenerative features (Lopes Abath Neto et al., 2021; Salzer-Sheelo et al., 2022). Genetic Heterogeneity of Myopathy with Myalgia, Increased Serum Creatine Kinase, and with or without Episodic Rhabdomyolysis MMCKR2 (620971) is caused by mutation in the DTNA gene (601239) on chromosome 18q12.
Combined oxidative phosphorylation deficiency 56
MedGen UID:
1824034
Concept ID:
C5774261
Disease or Syndrome
Combined oxidative phosphorylation deficiency-56 (COXPD56) is an autosomal recessive disorder characterized by lethargy at birth, hypotonia, developmental delay, myopathy, and ptosis (Thompson et al., 2022). For a discussion of genetic heterogeneity of combined oxidative phosphorylation deficiency, see COXPD1 (609060).
Congenital myopathy 15
MedGen UID:
1824046
Concept ID:
C5774273
Disease or Syndrome
Congenital myopathy-15 (CMYO15) is a skeletal muscle disorder characterized by symptom onset soon after birth. Affected infants are hypotonic and have severe respiratory insufficiency and feeding problems, sometimes requiring mechanical ventilation or tube feeding. The disorder is unique in that there is gradual improvement of the severe muscle weakness with time, although forced vital capacity remains decreased. Additional features include facial weakness, scoliosis, joint contractures, and persistent ptosis or external ophthalmoplegia (van de Locht et al., 2021). For a discussion of genetic heterogeneity of congenital myopathy, see CMYO1A (117000).
Rhabdomyolysis, susceptibility to, 1
MedGen UID:
1824080
Concept ID:
C5774307
Finding
Susceptibility to rhabdomyolysis-1 (RHABDO1) is an autosomal recessive disorder characterized by recurrent episodes of rhabdomyolysis beginning in the teenage years. Some of the episodes may be triggered by exercise or heat; others occur spontaneously. Severe cases may result in acute renal failure or compartment syndrome. Affected individuals tend to have myalgia or muscle weakness in childhood and between episodes. Laboratory studies show increased serum creatine kinase and nonspecific myopathic features on skeletal muscle biopsy (Cabrera-Serrano et al., 2022).
Congenital myopathy 18
MedGen UID:
1840919
Concept ID:
C5830283
Disease or Syndrome
Congenital myopathy-18 (CMYO18) is a disorder of the skeletal muscle characterized by the onset of symptoms of muscle weakness in early childhood, including in utero and infancy. There is clinical heterogeneity in the manifestations and severity, ranging from fetal akinesia sequence causing early death to onset of symptoms in adulthood. Most affected individuals show delayed motor development with generalized hypotonia and progressive axial and limb muscle weakness beginning soon after birth or in infancy. Additional features may include swallowing difficulties, external ophthalmoplegia, ptosis, high-arched palate, and respiratory insufficiency, which can lead to death in severe cases. Muscle biopsy shows variable morphologic abnormalities, including alveolar changes in the intermyofibrillar network, fiber size variability, focal disorganization, internal nuclei, and dilated sarcoplasmic reticulum and T-tubules. The disorder results from a defect in excitation-contraction coupling in skeletal muscle (Schartner et al., 2017; Ravenscroft et al., 2021; Mauri et al., 2021; Yis et al., 2019). For a discussion of genetic heterogeneity of congenital myopathy, see CMYO1A (117000).
Congenital myopathy 2b, severe infantile, autosomal recessive
MedGen UID:
1840936
Concept ID:
C5830300
Disease or Syndrome
Autosomal recessive congenital myopathy-2B (CMYO2B) is a disorder of the skeletal muscle characterized by severe hypotonia with lack of spontaneous movements and respiratory insufficiency, usually leading to death in infancy or early childhood (Agrawal et al., 2004). However, longer survival has also been reported, likely due to the type of mutation and extent of its impact (O'Grady et al., 2015). Mutations in the ACTA1 gene can cause a range of skeletal muscle diseases. About 90% of patients with ACTA1 mutations carry heterozygous mutations, usually de novo (CMYO2A; 161800), whereas 10% of patients carry biallelic ACTA1 mutations (CMYO2B) (Nowak et al., 2007). For a discussion of genetic heterogeneity of congenital myopathy, see CMYO1A (117000).
Myopathy, sarcoplasmic body
MedGen UID:
1840998
Concept ID:
C5830362
Disease or Syndrome
Sarcoplasmic body myopathy (MYOSB), also known as myoglobinopathy, is an autosomal dominant disorder characterized by adult-onset muscle weakness affecting the proximal and distal muscles. Affected individuals usually present with proximal and axial muscle weakness leading to gait disturbances, although some present with hand muscle weakness and atrophy. The disorder is slowly progressive, and patients may lose ambulation after a long disease course. Some individuals develop respiratory or cardiac symptoms, often needing nocturnal ventilation. Other more variable features may include neck muscle weakness and dysphagia; facial muscle weakness is uncommon (Olive et al., 2019; Hama et al., 2022).
Congenital myopathy 20
MedGen UID:
1841029
Concept ID:
C5830393
Disease or Syndrome
Congenital myopathy-20 (CMYO20) is an autosomal recessive neuromuscular disorder that shows wide phenotypic variability. Some patients present in early childhood with proximal muscle weakness affecting the lower and upper limbs resulting in difficulties running and climbing, whereas others present soon after birth with congenital limb or distal contractures. Additional features may include dysmorphic facial features and global developmental delay. Skeletal muscle biopsy may show nemaline rods (Nilipour et al., 2018; Pehlivan et al., 2019). For a discussion of genetic heterogeneity of congenital myopathy, see CMYO1A (117000).
Congenital myopathy 22A, classic
MedGen UID:
1841089
Concept ID:
C5830453
Disease or Syndrome
Classic congenital myopathy-22A (CMYO22A) is an autosomal recessive muscle disorder characterized by onset of muscle weakness in utero or soon after birth. Early features may include fetal hypokinesia, breech presentation, and polyhydramnios. Affected individuals are born with severe hypotonia and require respiratory and feeding assistance. Those who survive the neonatal period show a 'classic' phenotype of congenital myopathy with delayed motor development, difficulty walking, proximal muscle weakness of the upper and lower limbs, facial and neck muscle weakness, easy fatigability, and mild limb contractures or foot deformities. Some have persistent respiratory insufficiency; dysmorphic facial features may be present (Zaharieva et al., 2016). For a discussion of genetic heterogeneity of congenital myopathy, see CMYO1A (117000).
Nemaline myopathy 5B, autosomal recessive, childhood-onset
MedGen UID:
1841181
Concept ID:
C5830545
Disease or Syndrome
Autosomal recessive childhood-onset nemaline myopathy-5B (NEM5B) is a skeletal muscle disorder in which patients usually present with proximal muscle weakness of the lower and upper limbs in a limb-girdle distribution, resulting in gait abnormalities; however, most remain ambulatory even into late adulthood. Some affected individuals show delayed motor development. There is axial weakness and atrophy of the paraspinal muscles, along with kyphosis, scoliosis, and rigid spine, as well as variable limitations of the large joints. Most patients develop restrictive respiratory insufficiency with decreased forced vital capacity; some need noninvasive ventilation. Serum creatine kinase may be elevated. Muscle biopsy can show variable features, including nemaline rods, multiminicore lesions, endomysial fibrosis, and myofibrillar changes (Pellerin et al., 2020; Lee et al., 2022). For a discussion of genetic heterogeneity of nemaline myopathy, see NEM2 (256030).
Neuronopathy, distal hereditary motor, autosomal recessive 9
MedGen UID:
1850177
Concept ID:
C5882672
Disease or Syndrome
Autosomal recessive distal hereditary motor neuronopathy-9 (HMNR9) is a slowly progressive peripheral neuropathy characterized by juvenile onset of distal muscle weakness and atrophy, resulting in gait difficulties. Most affected individuals also have upper limb involvement with weakness and atrophy of the hand muscles. Foot deformities are often present. Some patients may have mild sensory abnormalities or pyramidal signs. Electrophysiologic studies are consistent with a length-dependent axonal motor neuropathy (summary by Jacquier et al., 2023). For a discussion of genetic heterogeneity of autosomal recessive HMN, see HMNR1 (604320).
Neuronopathy, distal hereditary motor, autosomal recessive 10
MedGen UID:
1846713
Concept ID:
C5882703
Disease or Syndrome
Autosomal recessive distal hereditary motor neuronopathy-10 (HMNR10) is a slowly progressive disorder characterized by distal muscle weakness and atrophy predominantly affecting the lower limbs and resulting in gait abnormalities; upper limb involvement often occurs. Most individuals have juvenile or adult onset, but some may show earlier onset in infancy or childhood. Although most affected individuals have a pure distal motor neuropathy, some may also have signs of upper motor neuron disease, including pyramidal signs and hyperreflexia, and some may show mild sensory involvement or mild respiratory insufficiency. Foot deformities and calf atrophy are commonly observed. Intellectual development, cognitive function, and brain imaging are typically normal. Electrophysiologic studies are consistent with an axonal motor (sometimes sensorimotor) neuropathy. In general, patients with earlier onset have a more severe disorder with faster progression (summary by El-Bazzal et al., 2019; Demaegd et al., 2022). El-Bazzal et al. (2019) and Lazo and Morejon-Garcia (2023) noted that VRK1-related motor neuron disease is clinically heterogeneous and has been described by various clinical terms, including spinal muscular atrophy, distal spinal muscular atrophy, amyotrophic lateral sclerosis (ALS), juvenile-onset ALS, hereditary motor and sensory neuropathy, Charcot-Marie-Tooth disease, and pure distal motor neuropathy. VRK1 mutations result in functional insufficiency. For a discussion of genetic heterogeneity of autosomal recessive HMN, see HMNR1 (604320).

Professional guidelines

PubMed

Giha HA, Sater MS, Alamin OAO
Acta Diabetol 2022 Jul;59(7):871-883. Epub 2022 Mar 15 doi: 10.1007/s00592-022-01860-9. PMID: 35291027

Recent clinical studies

Etiology

Cameron D, Abbassi-Daloii T, Heezen LGM, van de Velde NM, Koeks Z, Veeger TTJ, Hooijmans MT, El Abdellaoui S, van Duinen SG, Verschuuren JJGM, van Putten M, Aartsma-Rus A, Raz V, Spitali P, Niks EH, Kan HE
J Cachexia Sarcopenia Muscle 2023 Jun;14(3):1546-1557. Epub 2023 May 1 doi: 10.1002/jcsm.13242. PMID: 37127427Free PMC Article
Moreira GMS, Damázio LCM, Silva SVD, Silveira AT, Mesquita IG, Silva LAS, Pereira LA, Costa ACS, Santos IAL, Campos MEP, Vaz LSC, Cardoso ZA, Gomes JVRS, Júnior PHAC, Ide LM
Int J Environ Res Public Health 2023 Feb 8;20(4) doi: 10.3390/ijerph20042925. PMID: 36833625Free PMC Article
Mattiello-Sverzut AC, Martins EJ
Braz J Med Biol Res 2023;56:e12202. Epub 2023 Feb 10 doi: 10.1590/1414-431X2023e12202. PMID: 36790287Free PMC Article
Giha HA, Sater MS, Alamin OAO
Acta Diabetol 2022 Jul;59(7):871-883. Epub 2022 Mar 15 doi: 10.1007/s00592-022-01860-9. PMID: 35291027
van Veen BK, Schellens RL, Stegeman DF, Schoonhoven R, Gabreëls-Festen AA
Muscle Nerve 1995 Oct;18(10):1121-7. doi: 10.1002/mus.880181008. PMID: 7659106

Diagnosis

Giha HA, Sater MS, Alamin OAO
Acta Diabetol 2022 Jul;59(7):871-883. Epub 2022 Mar 15 doi: 10.1007/s00592-022-01860-9. PMID: 35291027
Lv X, Zhao B, Xu L, Jiang W, Dai T, Zhao D, Lin P, Yan C
Neurol Sci 2022 May;43(5):3371-3380. Epub 2021 Nov 28 doi: 10.1007/s10072-021-05783-1. PMID: 34839411
Cooley JR, Walker BF, M Ardakani E, Kjaer P, Jensen TS, Hebert JJ
BMC Musculoskelet Disord 2018 Sep 27;19(1):351. doi: 10.1186/s12891-018-2266-5. PMID: 30261870Free PMC Article
Godard MP, Gallagher PM, Raue U, Trappe SW
Pflugers Arch 2002 Jun;444(3):419-25. Epub 2002 Mar 20 doi: 10.1007/s00424-002-0821-1. PMID: 12111251
Bylund AC, Bjurö T, Cederblad G, Holm J, Lundholm K, Sjöstroöm M, Angquist KA, Scherstén T
Eur J Appl Physiol Occup Physiol 1977 Mar 15;36(3):151-69. doi: 10.1007/BF00421747. PMID: 323004

Therapy

Cameron D, Abbassi-Daloii T, Heezen LGM, van de Velde NM, Koeks Z, Veeger TTJ, Hooijmans MT, El Abdellaoui S, van Duinen SG, Verschuuren JJGM, van Putten M, Aartsma-Rus A, Raz V, Spitali P, Niks EH, Kan HE
J Cachexia Sarcopenia Muscle 2023 Jun;14(3):1546-1557. Epub 2023 May 1 doi: 10.1002/jcsm.13242. PMID: 37127427Free PMC Article
Hussein MR, Abu-Dief EE, Kamel NF, Mostafa MG
J Clin Pathol 2010 Sep;63(9):805-13. doi: 10.1136/jcp.2010.078204. PMID: 20819882
Baker SC, Atkin N, Gunning PA, Granville N, Wilson K, Wilson D, Southgate J
Biomaterials 2006 Jun;27(16):3136-46. Epub 2006 Feb 10 doi: 10.1016/j.biomaterials.2006.01.026. PMID: 16473404
Widrick JJ, Norenberg KM, Romatowski JG, Blaser CA, Karhanek M, Sherwood J, Trappe SW, Trappe TA, Costill DL, Fitts RH
J Appl Physiol (1985) 1998 Nov;85(5):1949-56. doi: 10.1152/jappl.1998.85.5.1949. PMID: 9804603
Giovenali P, Fenocchio D, Montanari G, Cancellotti C, D'Iddio S, Buoncristiani U, Pelagaggia M, Ribacchi R
Kidney Int 1994 Dec;46(6):1616-9. doi: 10.1038/ki.1994.460. PMID: 7700019

Prognosis

Karjalainen J, Tikkanen H, Hernelahti M, Kujala UM
BMC Cardiovasc Disord 2006 Jan 10;6:2. doi: 10.1186/1471-2261-6-2. PMID: 16403232Free PMC Article
Gibbels E, Kellermann K, Schädlich HJ, Adams R, Haupt WF
Acta Neuropathol 1992;83(4):371-8. doi: 10.1007/BF00713528. PMID: 1575014
Donaldson RM, Florio R, Rickards AF, Bennett JG, Yacoub M, Ross DN, Olsen E
Br Heart J 1982 Dec;48(6):589-97. doi: 10.1136/hrt.48.6.589. PMID: 6216905Free PMC Article

Clinical prediction guides

Junga A, Babenko T, Fedirko P, Pilmane M
J Int Med Res 2024 Mar;52(3):3000605241233521. doi: 10.1177/03000605241233521. PMID: 38436252Free PMC Article
Bizjak DA, Ohmayer B, Buhl JL, Schneider EM, Walther P, Calzia E, Jerg A, Matits L, Steinacker JM
Int J Mol Sci 2024 Jan 30;25(3) doi: 10.3390/ijms25031675. PMID: 38338957Free PMC Article
Cameron D, Abbassi-Daloii T, Heezen LGM, van de Velde NM, Koeks Z, Veeger TTJ, Hooijmans MT, El Abdellaoui S, van Duinen SG, Verschuuren JJGM, van Putten M, Aartsma-Rus A, Raz V, Spitali P, Niks EH, Kan HE
J Cachexia Sarcopenia Muscle 2023 Jun;14(3):1546-1557. Epub 2023 May 1 doi: 10.1002/jcsm.13242. PMID: 37127427Free PMC Article
Lundberg TR, Martínez-Aranda LM, Sanz G, Hansson B, von Walden F, Tesch PA, Fernandez-Gonzalo R
Am J Physiol Regul Integr Comp Physiol 2020 Jul 1;319(1):R50-R58. Epub 2020 May 20 doi: 10.1152/ajpregu.00061.2020. PMID: 32432913
Gerrits HL, Hopman MT, Offringa C, Engelen BG, Sargeant AJ, Jones DA, Haan A
Pflugers Arch 2003 Mar;445(6):734-40. Epub 2003 Jan 14 doi: 10.1007/s00424-002-0997-4. PMID: 12632195

Recent systematic reviews

Cooley JR, Walker BF, M Ardakani E, Kjaer P, Jensen TS, Hebert JJ
BMC Musculoskelet Disord 2018 Sep 27;19(1):351. doi: 10.1186/s12891-018-2266-5. PMID: 30261870Free PMC Article

Supplemental Content

Table of contents

    Clinical resources

    Practice guidelines

    • PubMed
      See practice and clinical guidelines in PubMed. The search results may include broader topics and may not capture all published guidelines. See the FAQ for details.
    • Bookshelf
      See practice and clinical guidelines in NCBI Bookshelf. The search results may include broader topics and may not capture all published guidelines. See the FAQ for details.

    Consumer resources

    Recent activity

    Your browsing activity is empty.

    Activity recording is turned off.

    Turn recording back on

    See more...